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We study a phase transition and critical properties of the quantum spin ladder system with a four-spin
interaction. We determine a phase boundary between a rung singlet and a staggered dimer phases numerically.
This phase transition is of a second order in the weak-coupling region. We confirm that this universality class
is described by the k=2 SU�2� Wess-Zumino-Witten model, analyzing the central charge and scaling dimen-
sions. In the strong-coupling region, phase transition becomes of a first order.
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I. INTRODUCTION

Quantum phase transitions and quantum critical phenom-
ena have attracted much interest in condensed matter and
statistical physics.1 Especially, ground states are not neces-
sarily ordered in low-dimensional quantum systems because
of quantum fluctuations. Spin chain systems and spin ladder
systems are typical examples of such systems. The quantum
spin ladder systems are studied from both theoretical and
experimental points of view.2,3 These systems are related to
Haldane’s conjecture4,5 and high-Tc superconductivity.

Effects of many-body spin interactions are much interest-
ing subjects recently. Two-body spin-exchange interactions
are derived from second-order perturbations in the strong-
coupling limit of the Hubbard model. Thus, it is a natural
extension to consider higher-order perturbation terms, for ex-
ample, four-spin exchange terms are derived from fourth-
order perturbations.6 Many-body interactions are studied in
relation to composite spin models.7,8 By the way, it has been
revealed that even the spin ladder model with only two-body
terms have a rich phase diagram,9 therefore we can expect
that systems with four-spin interaction terms may have dif-
ferent properties. We know that cyclic spin exchanges play
an important role in the solid 3He.10 Recently, a four-spin
cyclic �ring� exchange interaction is found in a two-
dimensional square lattice La2CuO4 which is a high-Tc su-
perconductor parent compound11 and in a spin ladder com-
pound La6Ca8Cu24O41.

12,13

Ring exchanges have a quite complex form represented
by spin operators. Therefore, it is better to investigate a sim-
pler Hamiltonian in order to understand effects of many-
body interactions. In this paper, we study a spin ladder model
which is described as the following Hamiltonian

H = Jleg �
�=1,2

�
j=1

L

S�,j · S�,j+1 + Jrung�
j=1

L

S1,j · S2,j

+ J4�
j=1

L

�S1,j · S1,j+1��S2,j · S2,j+1� , �1�

where S�,i is S= 1
2 spin operators at a site �� , i� and we set

Jleg=1. This model is one of the simplest model with four-
spin interactions �see Fig. 1�.

In a J4=0 case, this model is known as a usual spin ladder
system. The phase diagram of this model has been well
studied.14 In a Jrung�0 region, the ground state is the rung-
singlet phase which is gapped �see Fig. 2�. In a Jrung�0 case,
the ground state is the Haldane phase which is gapped, too.
The Jrung=0 point is a phase-transition point. This phase
transition is of a second order and the critical properties are
described by the two independent Tomonaga-Luttinger liq-
uids with the central charge c=2.

In a Jrung=0 case, this Hamiltonian is identical with a
spin-orbital model. In this case, the model �Eq. �1�� has an
SU�2� � SU�2� symmetry, especially at J4=4 point it has an
enhanced symmetry, that is, an SU�4� symmetry.15 In addi-
tion, the model �Eq. �1�� on Jrung=0, J4=4 point is exactly
solvable by the Bethe ansatz.16 The low-energy theory on
this point is described by the k=1 SU�4� Wess-Zumino-
Witten �WZW� model corresponding to c=3 conformal field
theory �CFT� which is equivalent to three free bosons.17,18

The whole phase diagram in the J4�0 has been obtained by
Itoi et al.19 In 0�J4�4 region, the ground state is the stag-
gered dimer ordered phase �see Fig. 3�. This phase is char-
acterized by the twofold-degenerate ground state with the
excitation energy gap and the spontaneous symmetry break-
ing of the one-site translation. In J4�4 region, the ground
state is gapless. The low-energy theory of the gapless phase
J4�4 is renormalized to the k=1 SU�4� WZW model.

Returning to the general coupling case of model �Eq. �1��,
effects of four-body interactions are studied about ground-
state properties by Bethe ansatz �only on the special line J4
=4, Jrung�0�,20 numerical calculations,21 effective-field
theory,22 and thermodynamics properties by transfer-matrix
renormalization group.23 The model �Eq. �1�� with Jrung
�0, J4�0 is investigated by Nersesyan and Tsvelik.24 This
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FIG. 1. Schematic structure of a S= 1
2 two-leg spin ladder of

Eq. �1�.
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case is directly linked to an S=1 bilinear-biquadratic
�BLBQ� chain.

In this study we treat the J4 ,Jrung�0 case in a weak-
coupling region where J4 ,Jrung are not enough large. We will
investigate the ground-state phase diagram and critical prop-
erties of the phase transition in an antiferromagnetic region
near the Jrung=J4=0 point where the model is described by
the c=2 CFT.

This paper is organized as follows. In Sec.II, we discuss
the relation between symmetry and boundary condition in
some phases. In Sec.III, we show our numerical results. In
Sec.IV, we summarize our results.

II. SYMMETRY AND BOUNDARY CONDITIONS

In this section, we discuss symmetries and boundary con-
ditions. At first, we describe several quantum numbers. As
usual, we define ST

z ���,jSj
z as a total magnetization and q as

a wave number. We introduce a rung parity Pr which is re-
lated to the inversion along the rung direction. And we intro-
duce a leg parity Pl which is related to the inversion along
the leg direction.

The ground state of the rung-singlet phase is unique,
whereas the ground state of the staggered dimer phase is
twofold degenerate in the thermodynamic limit. On the other
hand, the spontaneously symmetry breaking does not occur
in finite systems. We consider the finite system. We call the
ground state of the rung-singlet phase as RS, and one of the
linear combination of ground states of the staggered dimer
phase with Pr=1 as SD1, another state with Pr=−1 as SD2.
In Table I, we summarize the quantum numbers of these
three states. Note that under the periodic boundary condition
�PBC�, the quantum numbers of RS and SD1 are the same,
thus we cannot distinguish these two states. Although, in
principle, one can determine the phase boundary between the
rung-singlet phase and the staggered dimer phase, examining
the energy-gap size dependence, this method needs large size
data. Therefore, we will consider another approach, that is,
using the twisted boundary condition �TBC�.

Next we introduce the TBC.

S�,L+j
+ = S�,j

+ exp�i�� ,

S�,L+j
− = S�,j

− exp�− i�� ,

S�,L+j
z = S�,j

z , �2�

where � is called a twist angle. The case with �=0 is
equivalent to the PBC. Usually �=� is called the twisted
boundary condition.

Twist angle � does not affect Sz
T and Pr. The leg parity is

well defined in the case with only �=0,�. Under the TBC,
the system is not translationally invariant. But we can intro-
duce an extended wave number using some unitary transfor-
mation. This is discussed by Kolb25 and Fáth-Sólyom.26

Although the leg parity Pl of RS is the same under the
TBC as the PBC case, the meaning of the leg parity Pl of
SD1 drastically changes under the TBC, as can be seen in
Table I. Therefore, using Pl under the TBC, we can clearly
distinguish the RS state and SD1 state. In other words, in
order to determine the phase boundary between the rung-
singlet phase and the staggered dimer phase, we can use the
level crossing of energy eigenvalues of the RS state and the
SD1 state under the TBC.

From the other point of view, we can use the field theo-
retical approach. As is well known, Takhtajan-Babujian point
in S=1 BLBQ model is the second-order phase-transition
point with Z2 symmetry breaking in SU�2� symmetric mod-
els. This phase transition has the central charge c=3 /2.17,27

By the way, Fáth and Sólyom26 have found that a degeneracy
occurs at Takhtajan-Babujian point under the TBC but they
did not give the theoretical explanation of this degeneracy.
After that, Kitazawa and Nomura28 have proved that one can
determine the Takhtajan-Babujian-type critical point using
the level crossing of the energy eigenvalues under the TBC.
More precisely, they have done a renormalization-group
analysis for the k=2 SU�2� WZW model with the SU�2�
relevant term under the TBC.

From the analogy between the S=1 BLBQ model and the
present model �Eq. �1��, we expect that the level crossing of
S=1 BLBQ model under the TBC corresponds to one be-
tween a rung-singlet phase and a staggered dimer ordered
phase under the TBC in the model �Eq. �1��.

We predict that the level crossing of S=1 BLBQ model
under TBC corresponds to one between the rung-singlet
phase and staggered dimer ordered phase under the TBC.
Later we will confirm the universality class numerically in
order to check the validity of this prediction.

FIG. 2. A schematic picture of rung-singlet state. Two spins
S1,i ,S2,i enclosed by a dotted line is a singlet 1

�2
��↑↓	− �↓↑	�.

FIG. 3. A schematic picture of a staggered dimer order state
under the open boundary condition. Two spins S�,i ,S�,i+1 enclosed
by a dotted line is a singlet. This phase is characterized by the order
parameter 
S�,i−1 ·S�,i	-
S�,i ·S�,i+1	.

TABLE I. States and their symmetries. 1 denotes “even” and −1
denotes “odd.” �¯ � are eigenvalues under the TBC. We use a sym-
bol P� for parity P under the TBC.

ST
z Pr Pl q

RS 0 1 1 0

SD1 0 1 1�−1� 0

SD2 0 −1 1�−1� �
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III. NUMERICAL RESULTS

Here we assume that a direct phase transition occurs be-
tween the staggered dimer phase and the rung-singlet phase.
This is plausible in a small �Jrung ,J4� region. We first deter-
mine the phase boundary between the staggered dimer phase
and the rung-singlet phase. In order to determine the transi-
tion points, we use the TBC method. In this case, the bound-
ary condition is the following:

S�,j+L
� = − S�,j

� , S�,j+L
z = S�,j

z , �3�

where L is the system size. As discussed in the previous
section, from the analogy with the S=1 BLBQ model, we
will determine the phase boundary using the level crossing
between the lowest energy eigenvalue with quantum num-
bers ST

z =0, Pr
�=1, Pl

�=−1 under the TBC and the lowest
energy eigenvalue with ST

z =0, Pr
�=1, Pl

�=1 under the TBC
�see Table I�.26,28 Note that this level crossing is different
from the c=1 Gaussian line case.29,30 After determining the
phase boundary, we will confirm the universality class of this
transition, and we will justify this type of level-crossing
method under the TBC to determine the phase boundary.
Note that this method is exact to determine the k=2 SU�2�
WZW-type critical point, except the finite-size corrections
from the irrelevant fields with the scaling dimension x=4

such as L−2L̄−21 and L−41, L̄−41,31–33 which are related to the
lattice effect not included in the continuum theory.

Here we show numerical results of L=6,8 ,10,12,14 �the
number of sites N=12,16,20,24,28� using the exact diago-
nalization. In Fig. 4, we show the level crossing in the sub-
space ��,iS�,i

z =0 with the TBC for L=14 and Jrung=1.0.
In Fig. 5, we show the size dependence of the crossing

point for Jrung=1.0. Since there remain finite-size corrections
from irrelevant term x=4, we extrapolate crossing points as
follows:

J4
cross�L� = J4

cross + a
1

L2 + b
1

L4 + �higher-order terms� , �4�

where we neglect higher-order terms. We show the partial
phase diagram �level-crossing points� in Fig. 6.

Next, we investigate the properties of this phase transi-
tion. Since �Jrung ,J4�= �0,0� is a gapless point, we can expect
that the phase transition is of the second order, at least in a
weak-coupling region. It is believed that the ground states of
one-dimensional quantum system on the second-order phase-
transition point are expected to be conformal invariant. So
we can determine the universality class based on the CFT.34

The finite-size scaling of the ground-state energy on a critical
point with the PBC has a following form:

Eg�L� � �L −
�vc

6L
, �5�

where Eg�L� is the ground-state energy of the system with
the size L, � is the energy per site in the infinite system limit,
v is the spin-wave velocity, and c is the central charge.27,35

By the way, this central charge can be obtained from the
entropy profile of finite systems.36–38 But numerically very
long systems have to be investigated to obtain accurate re-
sults obtained from the entropy.39

The formula �5� is correct only in critical cases. Here we
define an effective central charge as follows:

Eg�L� � �L −
�vc̃

6L
, �6�

where c̃ is the effective central charge. This effective central
charge is equivalent to the central charge on the critical point
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FIG. 4. �Color online� Level crossing in the system with the
twisted boundary conditions. + is the lowest energy with Pl

�=1,
Pr

�=1, ST
z =0, � is the lowest energy with Pl

�=−1 Pr
�=1, ST

z =0 for
L=14�N=28� at Jrung=1.0.
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FIG. 5. �Color online� Size dependence of the crossing point for
Jrung=1.0 as a function of 1 /L2.
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FIG. 6. �Color online� Phase diagram of the spin ladder system
�1�, which is obtained from L=6,8 ,10,12,14, in the weak-coupling
region. Staggered order phase appears on an upper side of the cross-
ing line, rung-singlet phase appears on its lower side.
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or in the critical �massless� region. The effective central
charge decreases to zero in the noncritical �massive� region
since the finite-size correction of the ground-state energy is
exponentially decaying ��exp�−L /	�: 	 is a correlation
length�, with increasing the system size. This means that the
effective central charge rapidly decreases from a massless
region to a massive region.40,41 Actually, with a marginal
irrelevant field �operator�, there are logarithmic corrections
for the ground-state energy of the finite system in the critical
systems,

Eg�L� � �L −
�v
6L

c +
b

�ln L�3� + higher order, �7�

where b is constant. Note that it is proved that there are no
o� 1

ln L �, o� 1
�ln L�2 � terms.42–44 Hereafter we will neglect the

term 1 / �ln L�3, which is small enough. So we calculate the
effective central charge from Eq. �6�.

In order to obtain the effective central charge c̃, we need
the spin-wave velocity. The spin-wave velocity v is obtained
from the lowest-excitation energy with the momentum q
=2� /L and the total spin 1 which corresponds to the SU�2�
current

v�L� =
L

2�
�Eq =

2�

L
� − Eg� . �8�

Since there is no logarithmic correction in a current-current
correlation,45 we extrapolate v�L�,

v�L� = v + a
1

L2 + b
1

L4 + higher order terms, �9�

where a and b are fitting parameters. Neglecting higher-order
terms, we finally obtain the effective central charge c̃ nu-
merically. In Fig. 7, we show the effective central charge on
the crossing line. It can be observed that c̃�2 at Jrung=0 and
c̃�3 /2 in a weak-coupling region, whereas c̃ rapidly de-
creases in Jrung�1.5. This behavior is interpreted as the
phase transition between the rung-singlet phase and the stag-
gered dimer phase is of the second order with the central

charge c=3 /2 in the weak-coupling region, and it becomes
of the first order in Jrung�1.5.

Universality class of this phase transition cannot be com-
pletely determined only by the central charge. Therefore we
need to check consistency. From nonAbelian bosonization,46

a relation between the central charge and the level k of SU�2�
WZW model is the following:44

c =
3k

k + 2
. �10�

From a symmetry of the systems and this relation, the critical
properties with the central charge c=3 /2 are expected to be
described by the k=2 SU�2� WZW model.

Next, the scaling dimensions x of primary fields in Kac-
Moody algebra47,48 can be classified according to their left
and right spin sR=sL=0,1 /2, . . . ,k /2,

x =
2sL�sL + 1�

k + 2
, �11�

where k is a level of the WZW model. For the k=2 SU�2�
WZW case, the lowest-excitation state has sR=sL=1 /2, thus
x=3 /8, and the total spin S=0,1. Since the operators with
half-odd integer sL are odd under one-site translation, these
states have momentum q=�. The next lowest-excitation
state has sR=sL=1, thus x=1, and total spin S=0,1 ,2. Since
the operators with integer sL are even under one-site transla-
tion, these states have momentum q=0.44 Usually, a univer-
sality class is classified by a set of critical exponents �scaling
dimensions�. In the CFT, scaling dimensions xi are related to
the excitation energy of the finite-size system with the
PBC,31


Ei = Ei − Eg �
2�v

L
xi, �12�

where xi is the scaling dimension and i is an index charac-
terizing the excitation state. Unfortunately, there are logarith-
mic corrections from marginal operators.44,49 The leading
logarithmic correction term in the SU�2� WZW model is the
following:


Ei �
2�v

L
�xi −

1

2

S�S + 1� − sR�sR + 1� − sL�sL + 1�
ln L

� .

�13�

Using this formula, we can remove logarithmic corrections
selecting appropriate excitations which depend on the spin.
After we remove logarithmic corrections, we need to con-
sider finite-size corrections from the x=4 irrelevant fields

L−2L̄−21, L−41, and L̄−41.31–33 Considering these fields, we
can obtain an extrapolation formula,

xi�L� = xi + a
1

L2 + b
1

L4 + ¯ , �14�

where a and b are nonuniversal coefficients, and neglecting
higher order terms.

For x=3 /8 case with momentum q=� and spin S=0,1,
we obtain

0

0.5
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0 0.5 1 1.5 2

Jcross
rung

FIG. 7. �Color online� The effective central charge �+� and scal-
ing dimensions ���, ��� on the phase boundary �obtained by the
crossing points�. Scaling dimensions are extrapolated after logarith-
mic corrections removed. ��� denotes the scaling dimension x=1
for a q=0 mode. ��� denotes the scaling dimension x=3 /8 for a
q=� mode. Dotted lines are 3/8, 1, 3/2, and 2.
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Ei�S = 1� �
2�v

L
xi −

1

4

1

ln L
� �15�

and


Ei�S = 0� �
2�v

L
xi +

3

4

1

ln L
� . �16�

Thus we can remove logarithmic corrections,

xi �
L

8�v
�3
Ei�S = 1� + 
Ei�S = 0�� . �17�

In Fig. 8, we show the size dependence of the scaling dimen-
sion, removing logarithmic corrections with Eq. �17� at the
fixed Jrung=1.0. Furthermore, extrapolating them using Eq.
�14�, we show the resulting scaling dimension in Fig. 7 on
the phase boundary. Thus, we confirm x�3 /8 in the weak-
coupling region �Jrung�1.5�.

For x=1 case with momentum q=0 and spin S=0,1 ,2,
we obtain


Ei�S = 2� �
2�v

L
xi −

1

ln L
� , �18�

and


Ei�S = 1� �
2�v

L
xi +

1

ln L
� , �19�

and


Ei�S = 0� �
2�v

L
xi + 2

1

ln L
� . �20�

Thus we can remove logarithmic corrections,

xi �
L

4�v
�
Ei�S = 2� + 
Ei�S = 1�� . �21�

As before, in Fig. 9, we show the size dependence of the
scaling dimension, removing logarithmic corrections with
Eq. �21� at the fixed Jrung=1.0. Extrapolating them using Eq.
�14�, we show the resulting scaling dimension in Fig. 7 on
the phase boundary. We confirm x�1 in the weak-coupling
region �Jrung�1.5�.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have studied the S= 1
2 two-leg spin lad-

der systems with four-spin interactions. We numerically de-
termined the phase boundary between the rung-singlet phase
and the staggered dimer ordered phase using the twisted
boundary-condition method. And we confirmed the univer-
sality class of this phase transition combining the CFT and
the numerical diagonalization.

Calculating the effective central charge c̃, we found c̃
�3 /2 for small Jrung and small J4, and c̃�0 for large Jrung
and large J4. This means that the second-order phase transi-
tion occurs in the weak-coupling region and that the first-
order phase transition occurs in the strong-coupling region.

And we calculated scaling dimensions x since we cannot
decide a universality class from the central charge only.
Since this model has the SU�2� symmetry, there are logarith-
mic corrections. Removing the logarithmic corrections, we
obtained x�3 /8 and x�1 in the weak-coupling region nu-
merically. As a result, we conclude that the phase transition
between the rung-singlet phase and the staggered dimer
phase in the weak-coupling region is of the second order
which is described by the k=2 SU�2� WZW model. This is
consistent with Gritsev’s prediction from an effective-field
theoretical approach.22 This universality class belongs to the
same universality class as Takhtajan-Babujian point of S=1
one dimensional bilinear-biquadratic model.50–53 And this
has been found in a S= 1

2 two-leg ladder system with four-
spin cyclic exchange interactions.41,54

It is a future task to study what happens in the region
where the interaction is sufficiently strong, and to determine
the global phase diagram.
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